
OAuth 2.0 Exemplified

Marek Grabarz | Technology Advisor

2

3

4

Session agenda

▬ Introduction to OAuth 2.0

▬More about Outh 2.0 in Azure

▬Which grant do I need?

▬Grants in detail

▪ Client credentials

▪ Authorization code (+PKCE)

▪ Resource owner password credentials

▪ Implicit

▪ Delegation scenarios

Introduction to OAuth 2.0

6

Many luxury cars today come with a valet key. It is a special key you give the parking attendant and

unlike your regular key, will not allow the car to drive more than a mile or two. Some valet keys will

not open the trunk, while others will block access to your onboard cell phone address book.

Regardless of what restrictions the valet key imposes, the idea is very clever.

You give someone limited access to your car with a special key, while using your regular key to unlock

everything.

OAuth’swebsite

7

OAuth - stateless authorization
protocol

▪ Allows you to authorize service to acess your resources in another service

▪ Access is granted to token bearers.

▪ Decouples tokens from Clients (when compared to OAuth 1.0)

8

OAuth is everywhere and is cloud born

9

OAuth 2.0 roles

▪ Resource Owner (the User)

▪ Resource Server (the API)

▪ Client (the App - native/website)

▪ Authorization Server (the Server granting access)

10

OpenID Connect (OIDC)

▬ Authentication protocol
▬ Identity layer on top of OAuth 2.0
▬ Gives one login to many apps
▬ Provides user claims for tokens

11

Token types
▬ Access Token

▪ Used to make authenticated calls to Resource Server

▪ Represents that Resource Owner authorized Client to access Resource
Server

▪ Contains time information, scopes, audience

▬ Refresh Token

▪ Used to get new Access Token when previous one expires

▪ ID Token

▪ Contains information about the Resource Owner

12

Access token format

▬ JWT (JSON Web Token)
▬ Three parts – header, payload, signature
▬ All parts in base64 separated by „.”
▬ Base64OfHeader.Base64OfPayload.Base64OfSignature
▬ User with Bearer Authorization schema
▬ https://jwt.io https://jwt.ms

https://jwt.io/
https://jwt.ms/

13

Claims

▬ The information contained in JWTs are known as "claims", or assertions of
information about the bearer and subject of the token.

▬ OIDC claims http://openid.net/specs/openid-connect-core-
1_0.html#Claims

▬ Access Token Claims: aud, iss, sub, iat, nbf, exp, nonce ☺

http://openid.net/specs/openid-connect-core-1_0.html#Claims

14

Token endpoints (Authorization
Server)

▬ Authorization Enpoint – where Resource Owner allows Client to access
Resource Server

▬ Redirect Enpoint – where Authorization Entopoint returns back
▬ Token Enpoint – where Client obtains Access Token using authorization

given from Resource Owner
▬ More... UserInfo, Logout, Discovery, Revocation...

15

Simplified flow

More about OAuth 2.0 in Azure
Azure AD, Azure AD v2, Azure AD B2C

17

OAuth in Azure AD

▬ AAD currently support two distinct OAuth enpoints
▬ /oauth2/v2.0/token and /oauth/token
▬ Two separate portals for application management and registration
▬ ADAL vs MSAL

▬ well_known: https://login.microsoftonline.com/TenantID/v2.0/.well-
known/openid-configuration

https://login.microsoftonline.com/f5875480-a937-42fe-b4e5-ce1381684b9d/v2.0/.well-known/openid-configuration

18

Applications in AAD

▬ App types (native and Web/API)
▬ Registration portals
▬ Enterprise Applications
▬ Permissions
▬ Consents

19

OAuth in AAD B2C

▬ B2C only supports v2 endpoints
▬ /oauth2/v2.0/token
▬ Dedicated B2C blades, but there is still need fo AAD blade in limited cases.
▬ MSAL only

Which flow do I need?
All of them (almost)

21

22

Client Credentials Grant

▬ Used when Client is accessing:
- Protected resources under its control
- Or resources owned by others, that have been previously arranged to
get access to.

▬ You will find this flow useful for:
- Console apps, daemons, non-interactive tools
- Apps that authenticate via service principal (client id and secret). No
password used.

23

Authorization Code grant and JWT
Bearer grant

▬ Used when Client is accessing:
- Resources owned by other Resource Owner via impersonation.
- Credentials of Resource Owner are not disclosed to Client

▬ You will find this flow useful for:
- Webistes/APIs calling other APIs in context of logged in user.
- Requires interactive logon or SSO.

24

Resource Owner Password Credentials
Grant

▬ Used when Client is accessing:
- Resources owned by other Resource Owner via impersonation.
- Credentials of Resource Owner are stored by Client or processed by
Client

▬ You will find this flow useful for:
- Console apps, daemons, non-interactive tools – even tests
- Apps that authenticate as User, with his login and password
- Apps need to be highly trusted

25

Implicit Grant and ACG PKCE

▬ Used when Client is accessing:
- Resources owned by other Resource Owner via impersonation.
- Client app is public, with no secret.

▬ You will find this flow useful for:
- SPA webistes
- Desktop, mobile apps distributed anywhere
- Consider PKCE instead of Implicit.

26

Is my flow supported?

Client

Credentials

Authorization

Code

Resource

Owner

Password

Credentials

Implicit On Behalf Of

Azure AD 👍 👍 👍 👍 👍

Azure AD v2 👍 👍 👍 👍

Azure AD

B2C
👍? 👍 👍 👍

Flows in detail...
Keep your seatbelts fastened

28

Client Credentials Grant - Diagram

29

Client Credentails Grant - Ingredients

▬ Client is confidential
▬ One POST request to /Token endoint
▬ Need to add client_id, client_secret, grant_type=client_credentials and

scope.
▬ No refresh_token
▬ No delegated permissions

30

Authorization Code Grant - Diagram

31

Authorization Code Grant - Ingredients

▬ Both public (with PKCE) and confidential clients
▬ GET request to /authorize and receive authorization_code. Another POST

request to /token
▬ Need to send client_id (client_secret), redirect_uri,

grant_type=authorization_code
▬ Supports all token types
▬ Both delegated and client permissions

32

Authorization Code Grant - PKCE

▬ Defined in RFC7636
▬ Mainly addresses a risk of intercepting authorization code in mobile apps

(but not only… https://tools.ietf.org/html/draft-ietf-oauth-security-topics-11)
▬ PLAIN: code_challenge = code_verifier
▬ S256: code_challenge = BASE64URL-

ENCODE(SHA256(ASCII(code_verifier)))

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-11

33

Resource Owner Password Credentials
Grant - Diagram

34

Resource Owner Password Credentials
Grant - Ingredients

▬ Public client only!
▬ Single POST request to /token endpoint.
▬ Need to send grant_type=password, login, password, client_id, scope.
▬ No refresh_token

35

Implicit Grant - Diagram

36

Implicit Grant - Ingredients

▬ Do not use it ;-)
▬ Public client only
▬ GET request to /Authorize endpoint
▬ Need to add client_id, response_type=token, scope, redirect_uri
▬ No refresh_token
▬ Only delegated non-admin permissions

37

Delegation scenarios

Image: by Scott Brady

(https://scottbrady91.com)

https://scottbrady91.com/

38

Delegation scenarios

▬ Passing token
▬ Client credential grant in the middle.
▬ JWT Bearer Authorization Grant (RFC 7523), same for SAML (RFC 7522)
▬ Custom grants – Azure’s JWT Bearer grant!!!
▬ OAuth token exchange!!! https://tools.ietf.org/html/rfc8693

https://tools.ietf.org/html/rfc8693

39

JWT Bearer Grant - Diagrams

40

JWT Bearer Grant - Ingredients

▬ For confidential application.
▬ Similar to authorization code grant, but with second /token POST request.
▬ Need to send grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer,

client_id, client_secret, requested_token_use=on_behalf_of,
assertion={access_token}

▬ Same tokens/permissions as ACG

41

